Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (19) GO Terms (0) Nucleotides (74) Proteins (36) Interactants (6) Wiki
XB--920824

Papers associated with mespa (and morpholino)



???displayGene.coCitedPapers???
Show all mespa papers

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor., Cieslikiewicz-Bouet M, Naldi M, Bartolini M, Pérez B, Servent D, Jean L, Aráoz R, Renard PY., Biochem Pharmacol. July 1, 2020; 177 114010.


Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System., Akimov MG, Kudryavtsev DS, Kryukova EV, Fomina-Ageeva EV, Zakharov SS, Gretskaya NM, Zinchenko GN, Serkov IV, Makhaeva GF, Boltneva NP, Kovaleva NV, Serebryakova OG, Lushchekina SV, Palikov VA, Palikova Y, Dyachenko IA, Kasheverov IE, Tsetlin VI, Bezuglov VV., Biomolecules. February 12, 2020; 10 (2):


A novel peptide modulates alpha7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain., Greenfield SA, Day T, Mann EO, Bermudez I., J Neurochem. July 1, 2004; 90 (2): 325-31.


Overlapping drug interaction sites of human butyrylcholinesterase dissected by site-directed mutagenesis., Loewenstein-Lichtenstein Y, Glick D, Gluzman N, Sternfeld M, Zakut H, Soreq H., Mol Pharmacol. December 1, 1996; 50 (6): 1423-31.


Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants., Schwarz M, Loewenstein-Lichtenstein Y, Glick D, Liao J, Norgaard-Pedersen B, Soreq H., Brain Res Mol Brain Res. July 1, 1995; 31 (1-2): 101-10.


Site-directed mutagenesis of active site residues reveals plasticity of human butyrylcholinesterase in substrate and inhibitor interactions., Gnatt A, Loewenstein Y, Yaron A, Schwarz M, Soreq H., J Neurochem. February 1, 1994; 62 (2): 749-55.


Mutations and impaired expression in the ACHE and BCHE genes: neurological implications., Soreq H, Ehrlich G, Schwarz M, Loewenstein Y, Glick D, Zakut H., Biomed Pharmacother. January 1, 1994; 48 (5-6): 253-9.


Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands., Loewenstein Y, Gnatt A, Neville LF, Soreq H., J Mol Biol. November 20, 1993; 234 (2): 289-96.


Structure-function relationship studies in human cholinesterases reveal genomic origins for individual variations in cholinergic drug responses., Loewenstein Y, Gnatt A, Neville LF, Zakut H, Soreq H., Prog Neuropsychopharmacol Biol Psychiatry. November 1, 1993; 17 (6): 905-26.


Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE., Neville LF, Gnatt A, Loewenstein Y, Seidman S, Ehrlich G, Soreq H., EMBO J. April 1, 1992; 11 (4): 1641-9.


Catalytic properties of cholinesterases: importance of tyrosine 109 in Drosophila protein., Mutero A, Pralavorio M, Simeon V, Fournier D., Neuroreport. January 1, 1992; 3 (1): 39-42.


Anionic site interactions in human butyrylcholinesterase disrupted by two single point mutations., Neville LF, Gnatt A, Padan R, Seidman S, Soreq H., J Biol Chem. December 5, 1990; 265 (34): 20735-8.


Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase., Neville LF, Gnatt A, Loewenstein Y, Soreq H., J Neurosci Res. December 1, 1990; 27 (4): 452-60.


Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro., Patinkin D, Seidman S, Eckstein F, Benseler F, Zakut H, Soreq H., Mol Cell Biol. November 1, 1990; 10 (11): 6046-50.


Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas., Zakut H, Ehrlich G, Ayalon A, Prody CA, Malinger G, Seidman S, Ginzberg D, Kehlenbach R, Soreq H., J Clin Invest. September 1, 1990; 86 (3): 900-8.


Tissue-specific processing and polarized compartmentalization of clone-produced cholinesterase in microinjected Xenopus oocytes., Dreyfus PA, Seidman S, Pincon-Raymond M, Murawsky M, Rieger F, Schejter E, Zakut H, Soreq H., Cell Mol Neurobiol. September 1, 1989; 9 (3): 323-41.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H, Dziegielewska KM, Zevin-Sonkin D, Zakut H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


Acetylcholinesterase activity of Xenopus laevis oocytes., Gundersen CB, Miledi R., Neuroscience. December 1, 1983; 10 (4): 1487-95.


Changes in the activity and isozymes of acetyl and butyrylcholinesterase during Xenopus laevis development., Atherton RW, Lee ID., Comp Biochem Physiol C Comp Pharmacol. January 1, 1975; 50 (1): 27-32.

???pagination.result.page??? 1