Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4873) Expression Attributions Wiki
XB-ANAT-166

Papers associated with musculoskeletal system (and rho)

Limit to papers also referencing gene:
Show all musculoskeletal system papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Quantitative proteome dynamics across embryogenesis in a model chordate., Frese AN., iScience. April 19, 2024; 27 (4): 109355.                            


Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins., Eria-Oliveira AS., Nat Commun. January 2, 2024; 15 (1): 65.                              


Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses., Ismail T., Ecotoxicol Environ Saf. January 1, 2024; 269 115820.                      


Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


β-adrenergic receptor regulates embryonic epithelial extensibility through actomyosin inhibition., Mizoguchi Y., iScience. December 15, 2023; 26 (12): 108469.                            


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy., Van de Sompele S., Am J Hum Genet. November 3, 2022; 109 (11): 2029-2048.                                    


Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm., Matsuda M., Development. May 15, 2022; 149 (10):                                   


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Melanopsin phototransduction: beyond canonical cascades., Contreras E., J Exp Biol. December 1, 2021; 224 (23):         


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.                              


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. May 10, 2019; 146 (9):                               


Cdc42 regulates the cellular localization of Cdc42ep1 in controlling neural crest cell migration., Cohen S., J Mol Cell Biol. October 1, 2018; 10 (5): 376-387.                    


An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus., Vick P., iScience. April 27, 2018; 2 76-85.                                        


The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus., Li J., Regeneration (Oxf). October 28, 2016; 3 (4): 198-208.        


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T., Proc Natl Acad Sci U S A. September 6, 2016; 113 (36): 10103-8.                    


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan., Chang TH., Elife. July 9, 2015; 4                               


Neural crest specification by inhibition of the ROCK/Myosin II pathway., Kim K., Stem Cells. March 1, 2015; 33 (3): 674-85.


Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp., Gao S., Nat Commun. January 19, 2015; 6 8046.            


GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure., Itoh K., J Cell Sci. June 1, 2014; 127 (Pt 11): 2542-53.              


Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion., Moore R., Development. December 1, 2013; 140 (23): 4763-75.                                  


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Urotensin II receptor (UTR) exists in hyaline chondrocytes: a study of peripheral distribution of UTR in the African clawed frog, Xenopus laevis., Konno N., Gen Comp Endocrinol. May 1, 2013; 185 44-56.                          


Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut., Dush MK., Development. April 1, 2013; 140 (7): 1457-66.                      


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T., Cilia. August 1, 2012; 1 (1): 13.                        


The function of p120 catenin in filopodial growth and synaptic vesicle clustering in neurons., Chen C., Mol Biol Cell. July 1, 2012; 23 (14): 2680-91.                


TASK1 (K(2P)3.1) K(+) channel inhibition by endothelin-1 is mediated through Rho kinase-dependent phosphorylation., Seyler C., Br J Pharmacol. March 1, 2012; 165 (5): 1467-75.


SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton., Langdon Y., Development. March 1, 2012; 139 (5): 948-57.                


A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos., Morckel AR., Development. January 1, 2012; 139 (2): 437-42.        


Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1., Doherty JT., J Biol Chem. July 22, 2011; 286 (29): 25903-21.                    


Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling., Xu K., Dev Cell. April 19, 2011; 20 (4): 526-39.  


Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration., Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.                      


The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction., Madhavan R., PLoS One. December 29, 2009; 4 (12): e8478.                


Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases., Gu D., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.            


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis., Lavery DL., Dev Dyn. March 1, 2008; 237 (3): 768-79.          


Expression of RhoB in the developing Xenopus laevis embryo., Vignal E., Gene Expr Patterns. January 1, 2007; 7 (3): 282-8.                          


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Protein phosphatase activity is necessary for myofibrillogenesis., Terry M., Cell Biochem Biophys. January 1, 2006; 45 (3): 265-78.


Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos., Park TJ., Curr Biol. June 7, 2005; 15 (11): 1039-44.                


p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus., Ciesiolka M., J Cell Sci. August 15, 2004; 117 (Pt 18): 4325-39.                      


Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development., Miyakoshi A., Differentiation. February 1, 2004; 72 (1): 48-55.                  


Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation., Tahinci E., Dev Biol. July 15, 2003; 259 (2): 318-35.    


Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis., Lunardi A., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.      


Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones., Moritz OL., Gene. October 2, 2002; 298 (2): 173-82.          


Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing., Kofron M., J Cell Biol. August 19, 2002; 158 (4): 695-708.                  


cDNA cloning, sequence comparison, and developmental expression of Xenopus rac1., Lucas JM., Mech Dev. July 1, 2002; 115 (1-2): 113-6.          


Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway., Choi SC., Dev Biol. April 15, 2002; 244 (2): 342-57.                  

???pagination.result.page??? 1 2 ???pagination.result.next???