Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3924) Expression Attributions Wiki
XB-ANAT-50

Papers associated with mesoderm (and myc)

Limit to papers also referencing gene:
Show all mesoderm papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7

Sort Newest To Oldest Sort Oldest To Newest

FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest., Geary L., Elife. January 19, 2018; 7                     


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.                                            


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture., Takahashi C., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.                                      


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK., BMC Biol. July 16, 2018; 16 (1): 79.                            


Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest., Rao A., Development. August 8, 2018; 145 (15):                           


Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate., Chuykin I., Elife. September 26, 2018; 7                                                           


The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development., Espiritu EB., Sci Rep. October 30, 2018; 8 (1): 16029.                                      


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. April 9, 2019; 6 (2):                   


Barhl2 maintains T cell factors as repressors and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation., Sena E., Development. May 22, 2019; 146 (10):                                             


Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression., Kumar S, Kumar S., BMB Rep. June 1, 2019; 52 (6): 403-408.                


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


Trpc1 as the Missing Link Between the Bmp and Ca2+ Signalling Pathways During Neural Specification in Amphibians., Néant I., Sci Rep. November 5, 2019; 9 (1): 16049.                                    


The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development., Loreti M., J Biol Chem. February 28, 2020; 295 (9): 2724-2735.                


Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling., Reich S., BMC Mol Cell Biol. May 28, 2020; 21 (1): 39.              


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. September 14, 2020; 9                                                                                           


X-box-binding protein 1 is required for pancreatic development in Xenopus laevis., Yang J., Acta Biochim Biophys Sin (Shanghai). December 11, 2020; 52 (11): 1215-1226.                  


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 26, 2021; 148 (2):                                   


Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos., Mii Y., Elife. April 27, 2021; 10                     


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H., Development. May 15, 2021; 148 (10):                                           


Pinhead antagonizes Admp to promote notochord formation., Itoh K., iScience. June 25, 2021; 24 (6): 102520.                            


Tril dampens Nodal signaling through Pellino2- and Traf6-mediated activation of Nedd4l., Kim HS., Proc Natl Acad Sci U S A. September 7, 2021; 118 (36):                       


CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping., Naert T., Proc Natl Acad Sci U S A. November 23, 2021; 118 (47):                             


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos., Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.                                


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


maea affects head formation through ß-catenin degradation during early Xenopus laevis development., Goto T., Dev Growth Differ. January 1, 2023; 65 (1): 29-36.                  


Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development., Cowell LM., PLoS One. January 1, 2023; 18 (10): e0286040.                                  


Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development., Kuriyama S., Dev Growth Differ. February 1, 2023; 65 (2): 109-119.                


ccl19 and ccl21 affect cell movements and differentiation in early Xenopus development., Goto T., Dev Growth Differ. April 1, 2023; 65 (3): 175-189.                


Mechanical control of neural plate folding by apical domain alteration., Matsuda M., Nat Commun. December 20, 2023; 14 (1): 8475.                                    


ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation., Wang C., EMBO Rep. February 1, 2024; 25 (2): 646-671.                                          


Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae., Goutam RS., Mol Cells. April 1, 2024; 47 (4): 100058.                        


Inhibition of the serine protease HtrA1 by SerpinE2 suggests an extracellular proteolytic pathway in the control of neural crest migration., Pera EM., Elife. April 18, 2024; 12                                               

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7