Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2353) Expression Attributions Wiki
XB-ANAT-4083

Papers associated with tadpole (and hpse)

Limit to papers also referencing gene:
Show all tadpole papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Elevated pentose phosphate pathway flux supports appendage regeneration., Patel JH., Cell Rep. October 25, 2022; 41 (4): 111552.                  


Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles., Paul B., Gen Comp Endocrinol. September 15, 2022; 326 114072.      


Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration., Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.                      


Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail., Bishop TF., iScience. November 19, 2021; 24 (11): 103281.                        


TGF-β1 signaling is essential for tissue regeneration in the Xenopus tadpole tail., Nakamura M., Biochem Biophys Res Commun. August 6, 2021; 565 91-96.          


Mucociliary Epithelial Organoids from Xenopus Embryonic Cells: Generation, Culture and High-Resolution Live Imaging., Kang HJ., J Vis Exp. July 28, 2020; (161):     


Early redox activities modulate Xenopus tail regeneration., Ferreira F., Nat Commun. October 16, 2018; 9 (1): 4296.                


Cross-limb communication during Xenopus hindlimb regenerative response: non-local bioelectric injury signals., Busse SM., Development. October 8, 2018; 145 (19):             


A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole., Sato K., Dev Biol. January 15, 2018; 433 (2): 404-415.                    


interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration., Tsujioka H., Nat Commun. September 8, 2017; 8 (1): 495.                                


In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration., Suzuki M., Genes Cells. April 1, 2016; 21 (4): 358-69.                        


Carbohydrate metabolism during vertebrate appendage regeneration: what is its role? How is it regulated?: A postulation that regenerating vertebrate appendages facilitate glycolytic and pentose phosphate pathways to fuel macromolecule biosynthesis., Love NR., Bioessays. January 1, 2014; 36 (1): 27-33.    


Expression analysis of XPhyH-like during development and tail regeneration in Xenopus tadpoles: possible role of XPhyH-like expressing immune cells in impaired tail regenerative ability., Naora Y., Biochem Biophys Res Commun. February 8, 2013; 431 (2): 152-7.              


Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration., Love NR., Nat Cell Biol. February 1, 2013; 15 (2): 222-8.        


Two promoters with distinct activities in different tissues drive the expression of heparanase in Xenopus., Bertolesi GE., Dev Dyn. December 1, 2011; 240 (12): 2657-72.                  


Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes., Mondia JP., Biomed Opt Express. August 1, 2011; 2 (8): 2383-91.          


HDAC activity is required during Xenopus tail regeneration., Tseng AS., PLoS One. January 1, 2011; 6 (10): e26382.              


Long-distance signals are required for morphogenesis of the regenerating Xenopus tadpole tail, as shown by femtosecond-laser ablation., Mondia JP., PLoS One. January 1, 2011; 6 (9): e24953.            


Early requirement of Hyaluronan for tail regeneration in Xenopus tadpoles., Contreras EG., Development. September 1, 2009; 136 (17): 2987-96.                    


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM., Dev Biol. March 1, 2008; 315 (1): 203-16.                  


Apoptosis is required during early stages of tail regeneration in Xenopus laevis., Tseng AS., Dev Biol. January 1, 2007; 301 (1): 62-9.        

???pagination.result.page??? 1