Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (233) Attributions Wiki
XB-STAGE-37

Papers associated with NF stage 19

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5

Sort Newest To Oldest Sort Oldest To Newest

The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm., Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C., Development. October 1, 1996; 122 (10): 3045-53.                  


In vivo evidence for trigeminal nerve guidance by the cement gland in Xenopus., Honoré E, Hemmati-Brivanlou A., Dev Biol. September 15, 1996; 178 (2): 363-74.              


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE, von Dassow G, Kimelman D., Development. June 1, 1996; 122 (6): 1711-21.                    


Xenopus Xsal-1, a vertebrate homolog of the region specific homeotic gene spalt of Drosophila., Hollemann T, Schuh R, Pieler T, Stick R., Mech Dev. March 1, 1996; 55 (1): 19-32.          


A fork head related multigene family is transcribed in Xenopus laevis embryos., Lef J, Dege P, Scheucher M, Forsbach-Birk V, Clement JH, Knöchel W., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.  


The Xenopus laevis homeobox gene Xgbx-2 is an early marker of anteroposterior patterning in the ectoderm., von Bubnoff A, Schmidt JE, Kimelman D., Mech Dev. February 1, 1996; 54 (2): 149-60.          


tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman., Evans SM, Yan W, Murillo MP, Ponce J, Papalopulu N., Development. November 1, 1995; 121 (11): 3889-99.                


Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin., McGrew LL, Lai CJ, Moon RT., Dev Biol. November 1, 1995; 172 (1): 337-42.    


Initiation of anterior head-specific gene expression in uncommitted ectoderm of Xenopus laevis by ammonium chloride., Mathers PH, Miller A, Doniach T, Dirksen ML, Jamrich M., Dev Biol. October 1, 1995; 171 (2): 641-54.    


Polycomb and bmi-1 homologs are expressed in overlapping patterns in Xenopus embryos and are able to interact with each other., Reijnen MJ, Hamer KM, den Blaauwen JL, Lambrechts C, Schoneveld I, van Driel R, Otte AP., Mech Dev. September 1, 1995; 53 (1): 35-46.        


A chicken Wnt gene, Wnt-11, is involved in dermal development., Tanda N, Ohuchi H, Yoshioka H, Noji S, Nohno T., Biochem Biophys Res Commun. June 6, 1995; 211 (1): 123-9.


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL, Cho KW., Development. April 1, 1995; 121 (4): 993-1004.              


Integrin alpha 5 during early development of Xenopus laevis., Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P., Mech Dev. April 1, 1995; 50 (2-3): 187-99.                    


Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3., Pierce SB, Kimelman D., Development. March 1, 1995; 121 (3): 755-65.              


Regional specificity of RAR gamma isoforms in Xenopus development., Pfeffer PL, De Robertis EM., Mech Dev. February 1, 1994; 45 (2): 147-53.          


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R, Essex LJ, Bennett MF, Sargent MG., Development. November 1, 1993; 119 (3): 661-71.                  


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S, Herrenknecht K, Butz S, Kemler R, Hausen P., Development. June 1, 1993; 118 (2): 629-40.                    


A Xenopus homebox gene defines dorsal-ventral domains in the developing brain., Saha MS, Michel RB, Gulding KM, Grainger RM., Development. May 1, 1993; 118 (1): 193-202.              


Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene., von Dassow G, Schmidt JE, Kimelman D., Genes Dev. March 1, 1993; 7 (3): 355-66.                


Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos., Wolda SL, Moody CJ, Moon RT., Dev Biol. January 1, 1993; 155 (1): 46-57.            


Localization of a nervous system-specific class II beta-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization., Oschwald R, Richter K, Grunz H., Int J Dev Biol. December 1, 1991; 35 (4): 399-405.      


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR, Sato SM., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA, Holmyard DP, Millen KJ, Joyner AL., Development. February 1, 1991; 111 (2): 287-98.          


The distribution of E-cadherin during Xenopus laevis development., Levi G, Gumbiner B, Thiery JP., Development. January 1, 1991; 111 (1): 159-69.                


A nervous system-specific isotype of the beta subunit of Na+,K(+)-ATPase expressed during early development of Xenopus laevis., Good PJ, Richter K, Dawid IB., Proc Natl Acad Sci U S A. December 1, 1990; 87 (23): 9088-92.          


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT, Klymkowsky MW., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A, Melton DA., Development. May 1, 1989; 106 (1): 173-83.                  


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA, Polson AG, Klymkowsky MW., Development. January 1, 1989; 105 (1): 61-74.                      


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG, Gainer H., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW, Jenks BG, Van Overbeeke AP., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA, Woodland HR., Cell. January 31, 1986; 44 (2): 345-55.                


Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis., Chow I, Cohen MW., J Physiol. June 1, 1983; 339 553-71.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5