Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9836
Biochim Biophys Acta 2000 Dec 20;15091-2:324-34. doi: 10.1016/s0005-2736(00)00315-1.
Show Gene links Show Anatomy links

Molecular characterization of taurine transport in bovine aortic endothelial cells.

Qian X , Vinnakota S , Edwards C , Sarkar HK .


???displayArticle.abstract???
Cultured bovine aortic endothelial (BAE) cells expressed a Na(+)/Cl(-)-dependent taurine uptake activity that saturated with an apparent K(0.5) of approximately 4.9 microM for taurine and was inhibited by beta-alanine, guanidinoethane sulfonate, and homotaurine. We isolated a taurine transporter clone from a BAE cell cDNA library that revealed >91% sequence identity at the amino acid level to the previously cloned high-affinity mammalian taurine transporters. The biochemical and pharmacological properties of the bovine taurine transporter cDNA expressed in Xenopus oocyte was similar to those of the high-affinity taurine transporter. Surprisingly, F(-) blocked taurine uptake in BAE cells with an IC(50) of approximately 17.5 mM. The endogenous taurine uptake was also inhibited by the protein kinase C activator phorbol 12-myristate 13-acetate, but not by its inactive analog, 4 alpha-phorbol 12,13-didecanoate. The endogenous uptake was stimulated, however, by hypertonic stress and the increase was due to an increase in the V(max) of taurine uptake. Our results provide the first description of a molecular mechanism that may be responsible for maintaining the intracellular taurine content in the endothelial cells.

???displayArticle.pubmedLink??? 11118543
???displayArticle.link??? Biochim Biophys Acta